Coordinate regulation of the Escherichia coli formate dehydrogenase fdnGHI and fdhF genes in response to nitrate, nitrite, and formate: roles for NarL and NarP.
نویسندگان
چکیده
Escherichia coli possesses three distinct formate dehydrogenase enzymes encoded by the fdnGHI, fdhF, and fdoGHI operons. To examine how two of the formate dehyrogenase operons (fdnGHI and fdhF) are expressed anaerobically in the presence of low, intermediate, and high levels of nitrate, nitrite, and formate, chemostat culture techniques were employed with fdnG-lacZ and fdhF-lacZ reporter fusions. Complementary patterns of gene expression were seen. Optimal fdhF-lacZ expression occurred only at low to intermediate levels of nitrate, while high nitrate levels caused up to 10-fold inhibition of gene expression. In contrast, fdnG-lacZ expression was induced 25-fold in the presence of intermediate to high nitrate concentrations. Consistent with prior reports, NarL was able to induce fdnG-lacZ expression. However, NarP could not induce expression; rather, it functioned as an antagonist of fdnG-lacZ expression under low-nitrate conditions (i.e., it was a negative regulator). Nitrite, a reported signal for the Nar sensory system, was unable to stimulate or suppress expression of either formate dehydrogenase operon via NarL and NarP. The different gene expression profiles of the alternative formate dehydrogenase operons suggest that the two enzymes have complementary physiological roles under environmental conditions when nitrate and formate levels are changing. Revised regulatory schemes for NarL- and NarP-dependent nitrate control are presented for each operon.
منابع مشابه
Structural genes for nitrate-inducible formate dehydrogenase in Escherichia coli K-12.
Formate oxidation coupled to nitrate reduction constitutes a major anaerobic respiratory pathway in Escherichia coli. This respiratory chain consists of formate dehydrogenase-N, quinone, and nitrate reductase. We have isolated a recombinant DNA clone that likely contains the structural genes, fdnGHI, for the three subunits of formate dehydrogenase-N. The fdnGHI clone produced proteins of 110, 3...
متن کاملNitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine.
The fdnGHI operon of Escherichia coli encodes nitrate-inducible formate dehydrogenase. We report here the entire nucleotide sequence of fdnGHI. The sequence contains three open reading frames of sizes appropriate to encode the three subunits of formate dehydrogenase-N. fdnG contains an in-frame UGA codon that specifies selenocysteine incorporation, and the predicted amino acid sequence of FdnG ...
متن کاملFnr, NarP, and NarL regulation of Escherichia coli K-12 napF (periplasmic nitrate reductase) operon transcription in vitro.
The expression of several Escherichia coli operons is activated by the Fnr protein during anaerobic growth and is further controlled in response to nitrate and nitrite by the homologous response regulators, NarL and NarP. Among these operons, the napF operon, encoding a periplasmic nitrate reductase, has unique features with respect to its Fnr-, NarL-, and NarP-dependent regulation. First, the ...
متن کاملDifferent responses to nitrate and nitrite by the model organism Escherichia coli and the human pathogen Neisseria gonorrhoeae.
The ability of Escherichia coli to use both nitrate and nitrite as terminal electron acceptors during anaerobic growth is mediated by the dual-acting two-component regulatory systems NarX-NarL and NarQ-NarP. In contrast, Neisseria gonorrhoeae responds only to nitrite: it expresses only NarQ-NarP. We have shown that although N. gonorrhoeae NarQ can phosphorylate E. coli NarL and NarP, the N. gon...
متن کاملMicroarray analysis of gene regulation by oxygen, nitrate, nitrite, FNR, NarL and NarP during anaerobic growth of Escherichia coli: new insights into microbial physiology.
RNA was isolated from cultures of Escherichia coli strain MG1655 and derivatives defective in fnr, narXL, or narXL with narP, during aerobic growth, or anaerobic growth in the presence or absence of nitrate or nitrite, in non-repressing media in which both strain MG1655 and an fnr deletion mutant grew at similar rates. Glycerol was used as the non-repressing carbon source and both trimethylamin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 185 17 شماره
صفحات -
تاریخ انتشار 2003